Theoretical studies play a crucial role in these discoveries by predicting the quark compositions and potential energy ranges of such particles. In their recent research, Prof. Nilmani Mathur and postdoctoral fellow Dr. Archana Radhakrishnan from the Department of Theoretical Physics at TIFR, along with Dr. M. Padmanath from IMSc, have forecasted the existence of a novel tetraquark.
This newly identified subatomic particle consists of a beauty quark, a charm quark, and two light anti-quarks, placing it in a family of tetraquarks known as Tbc, or the beautiful-charming tetraquarks. They utilized the computational resources of the Indian Lattice Gauge Theory Initiative (ILGTI) to perform this calculation.
The formation of this specific tetraquark was examined through the interactions between bottom and charm mesons. Using variational techniques across various lattice spacings and valence light quark masses, the study analyzed energy eigenvalues of the interacting meson systems within finite volumes.
The Way Forward
This approach led to the conclusion regarding the existence of the tetraquark. Similar to the predicted particle, other tetraquarks with the same quark content but different spin and parity could also exist. This prediction is particularly timely, coinciding with the recent discovery of a tetraquark (Tcc) that contains two charm quarks and two light antiquarks.
As a result, there’s a strong possibility that the newly predicted particle, or a similar variant, could be discovered using existing experimental techniques. The necessary energy range and luminosity for their production and detection are becoming increasingly accessible.
Moreover, the predicted particle’s binding energy surpasses that of any previously discovered tetraquarks, and the binding weakens as the mass of the light quark increases. This points to the complex dynamics of strong interactions across various quark mass regimes and highlights intriguing features of the strong force in hadron formation, particularly those involving heavy quarks.
This discovery also adds motivation to search for heavier exotic subatomic particles in upcoming experiments, which could further our understanding of the strong force and unlock its full potential.
ALSO READ : Does A New Study Suggest A Rapid Disappearance Of Web Pages And Online Content?